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Abstract— We present the Semantic Robot Programming
(SRP) paradigm as a convergence of robot programming by
demonstration and semantic mapping. In SRP, a user can
directly program a robot manipulator by demonstrating a
snapshot of their intended goal scene in workspace. The robot
then parses this goal as a scene graph comprised of object poses
and inter-object relations, assuming known object geometries.
Task and motion planning is then used to realize the user’s
goal from an arbitrary initial scene configuration. Even when
faced with different initial scene configurations, SRP enables the
robot to seamlessly adapt to reach the user’s demonstrated goal.
For scene perception, we propose the Discriminatively-Informed
Generative Estimation of Scenes and Transforms (DIGEST)
method to infer the initial and goal states of the world from
RGBD images. The efficacy of SRP with DIGEST perception
is demonstrated for the task of tray-setting with a Michigan
Progress Fetch robot. Scene perception and task execution are
evaluated with a public household occlusion dataset and our
cluttered scene dataset.

I. INTRODUCTION

Many service robot scenarios, such as setting up a dinner
table or organizing a shelf, require a computational represen-
tation of a user’s desired world state. For example, how is
the dinner table to be set, or how is the shelf to be organized.
More specifically, what are the objects involved in the task,
what are the desired poses of those objects, and what are the
important spatial relationships between objects. Towards nat-
ural and intuitive modes of human-robot communication, we
present the Semantic Robot Programming (SRP) paradigm
for declarative robot programming over user demonstrated
scenes. In SRP, we assume a robot is capable of goal-directed
manipulation [35] for realizing an arbitrary scene state in
the world. A user can program such goal-directed robots by
demonstrating their desired goal scene. SRP assumes such
scenes can be perceived from partial RGBD observations,
which has proven a challenging problem in itself.

Goal-directed manipulation requires a true closing of the
loop between perception and action, beyond the existing
intellectual silos. Advances in object detection [13], [28]
from appearance has improved greatly in filtering of back-
ground noise and focused attention to objects of interest.
However, the applicability of such vision-based methods
robot perception remains unclear, especially for the purposes
of goal-directed manipulation. This circumstance has given
rise to new approaches to semantic mapping [20], [31],

Z. Zeng, Z. Zhou, Z. Sui and O.C. Jenkins are with the
Department of Electrical Engineering and Computer Science,
University of Michigan, Ann Arbor, MI, USA, 48109-2121

[zengzhen| zhezhou|zsui|ocj]@umich.edu

Zhiqgiang Sui

Odest Chadwicke Jenkins

initial

i

plan & execute actions

Fig. 1: A robot preparing a tray through goal-directed manipulations.
Given the observation of the user desired goal state and the initial state of
the tabletop workspace, the robot first perceives the axiomatic scene graph
of the goal and initial state, and then plan and execute goal-directed actions
to prepare the tray the way the user desires.

[17] to computationally model a robot’s environment into
perceivable objects with robot-actionable affordances.

We posit semantic mapping offers a springboard to new
forms of robot programming, such as Semantic Robot Pro-
gramming, where semantic maps provide a generic abstrac-
tion layer for robot programming. In our approach to this
problem, we must bridge the gap of interoperation between
semantic mapping and existing methods for goal-directed
task planning [12], [21], grasp planning [37] and motion
planning [33]. We have previously proposed methods for
scene estimation [34], [35] from robot RGBD sensing that
used scene graphs expressed axiomatically as a semantic
mapping abstraction. This abstraction allowed for ready use
with modern task, grasp, and motion planning systems. The
resulting of closing this loop with a semantic abstraction
layer is envisioned to enable portable robot-executable ex-
pressions accessible across a variety of modalities, including:
natural language, visual programming, and put-that-there
gesturing [4], [19]. However, the computational cost of
inference over scenes is asymptotically intractable as the
number of objects grows.

In this paper, we propose the paradigm of Semantic Robot
Programming for robot manipulators with a complementary
method for more tractable scene perception. SRP is a declara-
tive approach to programming robots through demonstration,
where users only need to demonstrate their desired state



of the world. SRP is general across methods of perception,
given the perceived scene is represented axiomatically. For
scene perception, we present the Discriminatively-Informed
Generative Estimation of Scenes and Transforms (DIGEST)
method to infer the initial and goal scene states for SRP
from RGBD images. DIGEST brings together discriminative
object detection and generative pose estimation for inference
of 6 DOF object poses in cluttered scenes, assuming the
number of objects is known. Given perceived initial and
goal scenes, the robot can plan and execute goal-directed
manipulation to autonomously transit the world from the
initial to the goal state.

We evaluate the SRP paradigm in tray-setting task scenario
with the Michigan Progress Fetch robot (Figure 1). We
benchmark the performance of DIGEST on a household
occlusion dataset [2] and our cluttered scene dataset. We
demonstrate that SRP is effective in understanding the goal
of a task given a demonstrated snapshot of the goal scene.
And, the robot is able to plan and execute goal-directed
manipulation actions to reach the goal from various initial
states of the world. We additionally found DIGEST performs
favorably in comparison with state-of-the-art methods for
scene perception, such as D2P [27], with fewer assumptions
of prior knowledge.

II. RELATED WORK

SRP builds on much existing work in robot Programming
by Demonstration (PbD) and scene perception for manip-
ulation. Similar to robot PbD, SRP aims to enable users
to effectively communicate their objectives to robots for
performing manipulation tasks. We posit advances in scene
perception for manipulation offers new avenues for extending
the ease and intuitiveness of robot PbD.

A. Programming by Demonstration

To improve communication of tasks from a user to a
service robot, existing research has focused on learning low-
level skills from users. Different approaches have been pro-
posed in Programming by Demonstration (PbD) for low-level
learning of skills, such as trajectories [26] [1] and control
policy [6] [15] in robot configuration space. These methods
are inherently limited to world states in workspace that are
similar to the ones in the demonstrations. By representing the
goal of a task in the workspace instead of in the configuration
space, goal-directed manipulation can reason and plan its
actions to reach the goal from arbitrary initial world states.

Other work has focused on the high-level aspects of a task.
Veeraraghavan et al. [39] propose learning high level action
plan for a repetitive ball collection task from demonstrations.
Ekvall et al. [10] focus on learning task goals and use
a task planner to reach the goal. Chao et al. [5] provide
an interface for the user to teach task goals in a tabletop
workspace. However, these methods wind up simplifying
the scene perception problem by using planar objects, box-
like objects or objects with distinguishing colors, that are far
from real world scenarios. Recently, Yang et al. [40] have
proposed learning action plans in real world scenario, similar

to our robot programming paradigm that works with real
world objects.

B. Scene Perception for Manipulation

Being able to perceive objects in real world scenarios
and act on them remains a challenge. Some works are
able to extract grasping point [7], [22], [36] in point cloud
data, however, their methods do not provide a structural
understanding of the scene, failing to support goal-directed
manipulation on objects.

Although not directly targeted at scene perception for ma-
nipulation, work on object pose estimation are highly related
to our work. Feature-based object pose estimation methods
suh as spin images [18], FPFH [29], OUR-CVFH [3] and
VFH [30], rely on feature matching between the object
model and observation, however, the problem is that the
performance of feature-based methods degrades as the en-
vironment becomes more cluttered and key features are
occluded. Recently, Narayanan et al. proposed D2P [27],
which outperforms feature-based method OUR-CVFH on the
household occlusion dataset [2]. D2P renders multiple scene
hypotheses, and use A* to search for the hypothesis that best
explains the observation. In our experiments, we demonstrate
that our proposed scene estimation method DIGEST outper-
forms D2P on the household occlusion dataset.

To plan goal-directed manipulations, knowing the object
poses is not sufficient, however. The robot must have a
structural understanding of the scene, that is, the inter-object
spatial relations. Given observations of the scene, our work
estimates a scene graph that represent the scene structure. Liu
et al. [23] also estimate a scene graph given observations,
however, their approach approximates objects as oriented
bounding boxes. Sui et al. proposed a generative approach
(AxMC) [35] for scene graph estimation and use Markov
Chain Monte Carlo (MCMC) to search for the best scene
graph hypothesis that explains the observations.

Both D2P and AxMC assume that the robot knows what
objects are present in the scene, and objects are standing in
their upright poses, thus both methods can only estimate 3
DOF poses of objects (i.e., x,y,0). However, these assump-
tions are too strong in real world scenarios. Instead, our scene
estimation method DIGEST does not rely on any of these
assumptions, and it can estimate 6 DOF poses of objects, as
long as the number of objects in the scene is known.

III. PROBLEM STATEMENT

SRP with DIGEST assumes the number of objects N,
present in the scene, 3D mesh models M = {m,--- ,m;} for a
set of objects. The robot is assumed capable of performing a
set of manipulation actions A = {aj,- - - ,a, } with known pre-
conditions and post-conditions on these objects. We assume
as given RGB-D observation of the goal scene og specified
by the user at time 7, and the current scene o; at a later
time ¢ 4+ T. The objective of SRP is to plan a sequence of
goal-directed manipulation actions {a;,---,a;} to rearrange
objects in the world such that the inter-object relations in sg
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Fig. 2: Our goal-directed robot programming has three stages: 1) Given the RGB-D observation of the goal and initial scene, we use the proposed scene
estimation method DIGEST to detect object and estimate the 6 DOF pose of objects; 2) Axiomatic scene graphs can be derived from the estimated object
poses, which express the inter-object spatial relations; 3) By describing the goal and initial scene graph by PDDL, the robot uses a task planner (e.g.,
STRIPS) to plan and execute a sequence of goal-directed actions to reorganize the objects in the scene, reaching the same inter-object relations in the goal

scene graph.

are satisfied; where DIGEST infers the goal scene graph sg
and the initial scene graph sj, respectively.

We use a list of axiomatic assertions to describe a scene
as a scene graph. The scene state at time ¢ is expressed as a
scene graph s; = {V/(x;)}X,, where V' € {exist, clear,on,in}
is an axiomatic assertion parameterized by x, = {g/ }1;’;0, with
g] denoting the pose of jth object at time ¢, N, being the
number of objects, and K being the total number of axiomatic
assertions. In our work, the assertions are limited to spatial
relations that can be tested geometrically. The 6 DOF pose
q; =[x/ .yl , ¢/, w/,6/] of each object is estimated, consist-
ing 3D position (x/,y/,z]) and orientation (¢/,y;,6/). The
scene graph can be inferred from the estimated object poses,
as explained later in Section IV-B.

IV. METHODS

The SRP paradigm consists of the perception of goal and
initial scene states, and the planning and execution stages,
as shown in Figure 2. Given observations of a cluttered
scene, the generative sampling inference process over object
poses is informed by detections from a discriminative object
detector. A scene graph encoding inter-object relations is
geometrically inferred from an estimate of inferred object
poses. The resulting scene graph is then expressed axiomat-
ically for use in task planning and execution.

A. DIGEST Cluttered Scene Estimation

Given observed RGB-D image pair of a cluttered scene
at time #, the objective is to estimate the object poses
gl,j=1,--- ,N.. We utilize the discriminative power of a
pre-trained object detector to first obtain a set of bounding
boxes with object labels. These bounding boxes are used to
guide the generative process of scene hypotheses sampling.

An overview of the cluttered scene estimation is as illustrated
in Figure 3.

1) Object Detection and Scene Hypotheses Generation:
Given an RGB image, m bounding boxes are detected by the
object detector. We use B; (0 < i <m) to denote the bounding
box. In the output of the object detector, each B; is associated
with a list of object detection confidence v(L;|B;), where
L; is the object class. For each B;, we generate an object
candidate C;,

C; = {argmaxv(L,|B;), B;} (D
Lj

which is a set including the object label with the highest
confidence measure and the associated bounding box. For
m generated candidates, the number of scene hypotheses &
equals to N, chooses m, i.e.,

"Cy,, if N.<m
1, otherwise

h= 2)
Thus, if the number of candidates is greater or equal to the
number of objects in the scene, each scene hypothesis H;
contains a combination of N, candidates selected from m
candidates. If the number of candidates is less than N, just
one scene hypothesis with m candidates will be generated.
2) Bootstrap Filtering for Pose Estimation: Each scene
hypothesis H; is modeled as a random state variable x;,
composed of a set of real-valued object poses. Object poses
are assumed to be statistically independent. We model the
inference of the state from robot observation as a Bayesian
filter problem. Compared to traditional Bayesian filter prob-
lems, we have only one observation: a snapshot of the scene
instead of a history of observations. Thus, we apply Iterated
Likelihood Weighting [25] to bootstrap the scene estimation
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Fig. 3: The proposed DIGEST method for cluttered scene estimation. First, the observed RGB image is passed through a R-CNN object detector trained
on our grocery object dataset. The R-CNN object detector outputs a set of bounding boxes, with associated object label and detection confidence. Knowing
the number of object present in the scene, possible scene hypotheses are enumerated, e.g., “C3 = 4 scene hypotheses are generated in this example. For
each scene hypothesis, particle filtering is applied to estimate object poses that best explains the observed depth. After convergence, DIGEST outputs the

estimated object poses for the most likely scene hypothesis.

process, where z1 =z = --- =z and the state transition in
the action model is replaced by a zero-mean Gaussian noise.
We approximate the belief distribution by a collection of N

particles {x,(j ) weighted by w,(j By
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as described by [8]. To evaluate the weight wl(j ) for particle
x,(j ), we render a depth image based on the object poses in

x,(’ ), and compare it against the observed depth image 2,(1 ),
Wt(j) _ e—/l,‘d(zj,w) )
where A, is a constant scaling factor. d(z,f,(’ )) is the sum of
the Euclidean distance between the 3D points projected back
from depth images z, f,(J ), using the intrinsic parameters of
the camera. Pose estimation is performed over successive
iterations that: 1) compute the weight of each particle,
2) normalize the weights to one, 3) draw N particles by
importance sampling, and 4) diffuse each sampled particle
by a zero-mean Gaussian noise. After maximum number of
iterations, the most likely particle as the scene estimate for
scene hypothesis H;:

x = argmax p(x\”|z1) (6)
)
t
3) Final Scene Ranking: After particle filtering for all
scene hypotheses, we have a scene estimate x; for each scene
hypothesis. We then rank them based on the likelihood of
each x; as computed earlier. The most likely x; is taken as

the scene estimate and is then used to derive the scene graph.

B. Scene Graph Structure

The objects pose estimation of a cluttered scene can be
turned into an axiomatic scene graph. We use following
axiomatic assertions: exist(q’/) for the assertion that object
j exists in the scene with pose ¢/; clear(q') for the assertion
that the top of object i is clear and no other objects are
stacked on it; on(q',q’) for the assertion that object i is
stacked on object j; in(q',q’) for the assertion that object
i is in object j. An example of a scene graph is given in
Figure 4.

To assert the proximity relations between two objects i, j,
we add a virtual object q¥ with geometry m” into the scene
graph, with m” being a shape that can be arbitrarily defined
based on the application, and ¢" being the identity pose in
the frame of object i. Then, the proximity relation between
objects i, j can be encoded by {has(q',q"), in(q?,q’)}, where
has(q',q") asserts that object i has a virtual object q¥ attached
to its frame. When the parent object i is in a new location,
the robot can adapt to the new scenario by placing the child
object j within the region of m? attached to the frame of i.

To determine the stacking relations between the objects,
we use simple heuristics. In the 3D mesh object models, the
z-axis of each object is the gravitational axis when the object
stands upright. The dimensions {/, iy, k. } of the 3D box that
encloses each object model are given as prior knowledge. In
order to determine whether object i is being supported by
another object, two heuristics are tested: (1) if one of the
object axes (e.g., x-axis) is aligned with the gravitational
axis, then the height A; of the 3D volume occupied by the
object equals to the corresponding dimension (e.g. &) of the
provided 3D enclosing box. A simple rule 7' — A'“%'¢ > 0.5k
is used to determine whether object i is being supported by
another object; (2) if none of the object axes are aligned
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Fig. 4: An axiomatic scene graph example. In the scene graph derived from the estimated object poses, each node corresponds to an object, and each
edge indicates the supporting relation between objects. fable is by default the root node.

with the gravitational axis, then object i is being supported
by another object.

The set of objects that is being supported by other objects
is sorted with increasing z values of the object pose, and is
denoted as Os, the remaining objects are denoted as O;. For
each object i € Oy, a heuristic measure is used to determine
which object j € O; is supporting i,

argmax ; f(ry(q'),r1(q’))

where f(r,r,) measures the overlapping area of two regions
r1,r2, and r,(¢"), r,(q") represent the projected region on the
table of the top and bottom surface of object i, respectively.
Once the supporting object for i € Oy is identified, i is moved
from set Os to O;. With the supporting relation between a pair
of objects i, j identified, the corresponding axiomatic asser-
tion is expressed as either on(q',¢’) or in(q',q’), depending
on the geometry type of the supporting object j being convex
or concave.

V. IMPLEMENTATION
A. RCNN object detector

We employ R-CNN [14] as our discriminative object de-
tector as described in section IV-A.1. R-CNN first generates
object bounding boxes given an image, then for each bound-
ing box, it outputs the confidence measure through a deep
convolutional neural network. For the sake of efficiency and
performance, we replace the original selective search [38]
with EdgeBox [41] for object proposal generation. We train
an R-CNN object detector on our object dataset that includes
15 grocery objects. The dataset contains 8366 ground truth
images (~557 average ground truth images for one object)
and 60563 background images. We fine tuned our object
detector on a pre-trained model on ImageNet [9].

B. Particle Filtering and parallelization

During bootstrap filtering for pose estimation as described
in section IV-A.2. Each object in each particle x,(j ) is initial-
ized by candidate C; in the scene hypothesis, the object label
l; determines which 3D mesh object model to use, and the
initial pose is uniformly sampled inside the bounding box
B;. A parallel graphics engine rapidly renders depth images

given all particles. CUDA is used to compute the weights

of all particles in parallel. Through our experiment, we fix
particle filter iteration to 400 and use 625 particles.

In the particle filtering process, the pose of each object
is estimated sequentially. For example, if there are four
hypothesized objects and 400 particle filter iterations, the
pose of the object with the maximum detection confidence
is estimated in the first 100 iterations. Then the pose of the
object with the 2nd largest detection confidence is estimated
in the next 100 iterations, with the first object fixed at
the most likely pose. We carry on the estimation process
iteratively for the remaining objects.

C. Planning and Execution

Given the observation of the goal state of the world,
the robot estimates the goal scene graph, and stores the
desired inter-object relations by PDDL [24]. Similarly, the
robot estimates and stores the initial inter-object relations by
PDDL. With sets of PDDL that describe the initial and goal
state, the robot uses a task planner to plan a series of goal-
directed actions to rearrange objects in the initial scene, such
that the same inter-object relations in the goal scene graph
are satisfied. We use breadth first search STRIPS[11] as our
task planner. Note that the robot does not need to rearrange
the objects with the exact same poses as in the goal scene, as
long as the same inter-object relations are achieved, similarly
to how human would arrange a set of daily objects based on
simple instructions.

The task planner gives a sequence of high-level pick-and-
place actions. To pick an object, the robot is given a set
of pre-computed grasp poses of the object using [36], and
uses Moveit! [32] to check which grasp pose it can generate
a collision-free trajectory for, and use that for grasping. To
place an object, the robot sample place poses in the empty
space that satisfies the desired inter-object relations, and
again use the place pose it can generate a collision-free
trajectory for.

VI. EXPERIMENTS

In our experiments, we first evaluate our scene estima-
tion method on a public household occlusion dataset and
our cluttered scene dataset, and then evaluate our overall
semantic robot programming paradigm in tray setting tasks.
DIGEST outperforms the state of the art method D2P on
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Fig. 5: Object pose estimation benchmark of DIGEST on public household
object dataset [2], compared with three baseline methods: D2P, OUR-CVFH
and BF-ICP for different correctness criteria At, AB. DIGEST outperforms
D2P for strict correctness criteria, and performs on par with D2P for relaxed
correctness criteria.

the household occlusion dataset, and outperforms FPFH on
our cluttered scene dataset. We demonstrate the effectiveness
of our system for programming a robot to complete various
tray-setting tasks through goal-directed manipulations. We
run all experiments on a computer with an Titan X Graphics
card and CUDA 7.5.

A. DIGEST: Cluttered Scene Estimation

To evaluate DIGEST on pose estimation, we benchmarked
the performance of DIGEST on two different datasets: house-
hold occlusion dataset [2], and our cluttered scene dataset.
The household occlusion dataset contains objects standing
up right, thus it only affords benchmarking on 3 DOF object
pose estimation. In our cluttered scene dataset, objects can
be in arbitrary pose, and we use it for benchmarking on 6
DOF object pose estimation. Object pose estimation accuracy
is calculated as the percentage of correctly localized objects
over the total number of objects in the dataset. An object is
correctly localized if the pose error falls within certain posi-
tion error threshold A¢ and rotation error threshold A8. The
position error is the Euclidean distance error in translation;
the rotation error is the absolute angle error in orientation.
For rotationally symmetric objects, the rotation error about
the symmetric axis is ignored.

1) Household Occlusion Dataset — 3 DOF Object Poses:
The household occlusion dataset contains 22 test scenes with
80 objects in total. The test scenes include objects such
as milk bottles, laundry items, mugs and etc; We compare
DIGEST against three baseline methods as described in [27],
that is, D2P, OUR-CVFH [3], and Brute Force ICP (BF-ICP).
D2P also uses an R-CNN object detector as part of their pose
estimation process, but it is not clear what hyper parameters
they choose during the training phase of the object detector.

[ s DIGEST| [=== FPFH]

Fig. 6: Object pose estimation benchmark of DIGEST on our cluttered
scene dataset, compared with baseline method FPFH under different cor-
rectness criteria At, AG. DIGEST outperforms FPFH with large margin.

In order to avoid bias in the training of the object detector, we
use their object detector on the household occlusion dataset.

When only little error is allowed for an estimated pose
to be counted as correct, as shown in the left upper plot
in Figure 5, the accuracy of DIGEST is nearly twice the
accuracy of D2P. As we relax the tolerance on the pose
estimation error, as shown in the other three plots in Figure
5, DIGEST performs on par with D2P. Overall, DIGEST
outperforms D2P since (1) DIGEST explores the state space
a lot more than D2P, as we do not discretize the state space,
and (2) DIGEST does not use ICP for local search, which
D2P employs for pose estimation. In terms of run time,
DIGEST takes around 30 seconds (varying with the number
of objects and the size of object mesh), which is faster than
139.74 seconds reported in D2P.

2) Cluttered Scene Dataset — 6 DOF Object Poses: We
collect a cluttered scene dataset with 16 different sceness,
and 72 objects in total. This dataset includes laundry items,
kitchen items and toy with non-trivial geometry. The number
of objects in each scene ranges from 3 to 7. This dataset is
much more challenging than the household object dataset,
as the objects can have random 6 DOF poses. We compare
the performance of DIGEST with FPFH [29], as shown in
Figure 6.

B. Semantic Robot Programming: Tray Setting

We designed our experiments around a service robot
scenario, as illustrated in Figure 1. The robot needs to
prepare a tray as specified by the user int the goal scene. We
tested our system on scenes of 4 to 6 objects including the
tray, with different inter-object relations, such as stacking and
proximity relations. The robot is able to perceive the initial
and goal state, then plan and execute goal-directed actions
to satisfy the inter-object relations in the goal scene graph.
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Fig. 7: Our robot performing goal-directed manipulation (middle columns) to prepare a tray (right) satisfying the user-demonstrated goal (left bottom).

An example of SRP for goal-directed manipulation is
shown in Figure 7. Based on the scene graph inferred from
the object pose estimates, the robot generates a sequence
of goal-directed actions to achieve the goal state. Our tray
setting experiments are shown in Figure 8, and more detail
in the accompanying video!. The goal and start scenes are
well estimated as a collection of 6DOF poses of objects. The
robot successfully sets up a tray as the user desired in 10 out
of 10 different tray setting experiments.

VII. CONCLUSION

We have presented Semantic Robot Programming as a
paradigm for users to easily program robots in a declarative
goal-directed manner. We demonstrate the effectiveness of
SRP using the proposed DIGEST scene perception method on
two datasets of objects in occlusion and clutter: both house
occlusion dataset and our cluttered scene dataset. Through
our approach to generative-discriminative perception, SRP
with DIGEST is able to perceive, reason, and act to realize
an arbitrary user-demonstrated goal in cluttered scenes.

There are many future directions to pursue, such as motion
planning over sequences of general manipulation actions.
Currently, grasp point localization [36] is used to select good
grasp poses for object picking. However, such selected grasp
poses are not necessarily appropriate for a later placement
actions. Visual inspection on selected grasps is done before
robot execution. Ideally, appropriate grasp poses would be
provided by a manipulation affordance mechanism, such
as Affordance Templates [16] associating robot action with
an object. Such affordance mechanisms would allow for
investigation of more flexible task and motion planning over
sequences of actions. We further posit scene perception can
be made to run in interactive-time through a thoughtful
parallelized implementation, enabling potentially interactive
planning and manipulation execution.
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